Pablo Invierno, Global Technologies
Rodrigo Ruiz, Duxaoil Texas LLC
The prevention and mitigation of paraffin and asphaltene deposition in oil and gas wells behaves differently depending on each well’s fluid chemistry and the thermodynamic production conditions. These variables combined make the chemical mitigation a challenging process, the target chemistry must be tested in well conditions and in representative samples to determine the optimum formulation and this process could take multiple iterations until it gets dial in. Furthermore, these dynamic conditions change over time making the optimization process a full-time effort.
The alternative of using fluid thermal treatments, using hot oil or water, are inefficient and normally used as a corrective action instead of a preventive measure. Obviously, the last option is mechanically removing the paraffin with scrapers or replace the elements showing issues. Both alternatives take time, resources, and loss of consequential production, and overall poor production performance of the well.
Normally the mitigation implemented at a field level has a combination of these techniques, always targeting the fluid, but not working at a tubular surface level.
This work describes the research, development and full implementation cases of a mature technology that uses surface thermal treatment of tubing to minimizes paraffin and asphaltene deposition within the tubing string. The technology first developed for heavy oil producers proved its wide application in paraffin with more than 1000 systems installed in South America.